Appearance
云端部署指南
本指南将详细介绍如何在各种云平台上部署AnythingLLM,包括容器化部署、无服务器部署和托管服务部署等多种方案。
部署架构概览
基础架构组件
mermaid
graph TB
A[负载均衡器] --> B[AnythingLLM 实例]
B --> C[数据库]
B --> D[向量数据库]
B --> E[文件存储]
B --> F[缓存层]
G[CDN] --> A
H[监控系统] --> B
I[日志系统] --> B
部署模式选择
单实例部署
适合小型团队和开发环境:
- 成本低
- 配置简单
- 适合轻量级使用
高可用部署
适合生产环境:
- 多实例负载均衡
- 数据库集群
- 自动故障转移
微服务架构
适合大规模企业部署:
- 服务解耦
- 独立扩展
- 容错能力强
AWS 部署
Amazon ECS 部署
基础配置
yaml
# ecs-task-definition.json
{
"family": "anythingllm",
"networkMode": "awsvpc",
"requiresCompatibilities": ["FARGATE"],
"cpu": "1024",
"memory": "2048",
"executionRoleArn": "arn:aws:iam::account:role/ecsTaskExecutionRole",
"taskRoleArn": "arn:aws:iam::account:role/ecsTaskRole",
"containerDefinitions": [
{
"name": "anythingllm",
"image": "mintplexlabs/anythingllm:latest",
"portMappings": [
{
"containerPort": 3001,
"protocol": "tcp"
}
],
"environment": [
{
"name": "NODE_ENV",
"value": "production"
},
{
"name": "DATABASE_URL",
"value": "postgresql://user:pass@rds-endpoint:5432/anythingllm"
}
],
"secrets": [
{
"name": "OPENAI_API_KEY",
"valueFrom": "arn:aws:secretsmanager:region:account:secret:openai-key"
}
],
"logConfiguration": {
"logDriver": "awslogs",
"options": {
"awslogs-group": "/ecs/anythingllm",
"awslogs-region": "us-east-1",
"awslogs-stream-prefix": "ecs"
}
}
}
]
}
ECS 服务配置
yaml
# ecs-service.yaml
apiVersion: v1
kind: Service
metadata:
name: anythingllm-service
spec:
serviceName: anythingllm
cluster: production-cluster
taskDefinition: anythingllm:1
desiredCount: 2
launchType: FARGATE
networkConfiguration:
awsvpcConfiguration:
subnets:
- subnet-12345678
- subnet-87654321
securityGroups:
- sg-anythingllm
assignPublicIp: ENABLED
loadBalancers:
- targetGroupArn: arn:aws:elasticloadbalancing:region:account:targetgroup/anythingllm
containerName: anythingllm
containerPort: 3001
Amazon EKS 部署
Kubernetes 部署文件
yaml
# k8s-deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: anythingllm
namespace: production
spec:
replicas: 3
selector:
matchLabels:
app: anythingllm
template:
metadata:
labels:
app: anythingllm
spec:
containers:
- name: anythingllm
image: mintplexlabs/anythingllm:latest
ports:
- containerPort: 3001
env:
- name: NODE_ENV
value: "production"
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: anythingllm-secrets
key: database-url
- name: OPENAI_API_KEY
valueFrom:
secretKeyRef:
name: anythingllm-secrets
key: openai-api-key
resources:
requests:
memory: "1Gi"
cpu: "500m"
limits:
memory: "2Gi"
cpu: "1000m"
livenessProbe:
httpGet:
path: /api/health
port: 3001
initialDelaySeconds: 30
periodSeconds: 10
readinessProbe:
httpGet:
path: /api/ready
port: 3001
initialDelaySeconds: 5
periodSeconds: 5
---
apiVersion: v1
kind: Service
metadata:
name: anythingllm-service
namespace: production
spec:
selector:
app: anythingllm
ports:
- protocol: TCP
port: 80
targetPort: 3001
type: LoadBalancer
Ingress 配置
yaml
# ingress.yaml
apiVersion: networking.k8s.io/v1
kind: Ingress
metadata:
name: anythingllm-ingress
namespace: production
annotations:
kubernetes.io/ingress.class: "nginx"
cert-manager.io/cluster-issuer: "letsencrypt-prod"
nginx.ingress.kubernetes.io/ssl-redirect: "true"
spec:
tls:
- hosts:
- anythingllm.yourdomain.com
secretName: anythingllm-tls
rules:
- host: anythingllm.yourdomain.com
http:
paths:
- path: /
pathType: Prefix
backend:
service:
name: anythingllm-service
port:
number: 80
AWS App Runner 部署
App Runner 配置
yaml
# apprunner.yaml
version: 1.0
runtime: docker
build:
commands:
build:
- echo "Building AnythingLLM"
run:
runtime-version: latest
command: npm start
network:
port: 3001
env: PORT
env:
- name: NODE_ENV
value: production
- name: DATABASE_URL
value: postgresql://user:pass@rds-endpoint:5432/anythingllm
RDS 数据库配置
PostgreSQL 配置
bash
# 创建 RDS 实例
aws rds create-db-instance \
--db-instance-identifier anythingllm-db \
--db-instance-class db.t3.medium \
--engine postgres \
--engine-version 14.9 \
--master-username anythingllm \
--master-user-password your-secure-password \
--allocated-storage 100 \
--storage-type gp2 \
--vpc-security-group-ids sg-12345678 \
--db-subnet-group-name anythingllm-subnet-group \
--backup-retention-period 7 \
--multi-az \
--storage-encrypted
Google Cloud Platform 部署
Cloud Run 部署
基础部署
bash
# 构建并推送镜像
gcloud builds submit --tag gcr.io/PROJECT_ID/anythingllm
# 部署到 Cloud Run
gcloud run deploy anythingllm \
--image gcr.io/PROJECT_ID/anythingllm \
--platform managed \
--region us-central1 \
--allow-unauthenticated \
--memory 2Gi \
--cpu 2 \
--max-instances 10 \
--set-env-vars NODE_ENV=production \
--set-env-vars DATABASE_URL=postgresql://user:pass@db-host:5432/anythingllm
Cloud Run 配置文件
yaml
# cloudrun.yaml
apiVersion: serving.knative.dev/v1
kind: Service
metadata:
name: anythingllm
annotations:
run.googleapis.com/ingress: all
spec:
template:
metadata:
annotations:
autoscaling.knative.dev/maxScale: "10"
run.googleapis.com/cpu-throttling: "false"
run.googleapis.com/memory: "2Gi"
run.googleapis.com/cpu: "2"
spec:
containerConcurrency: 100
containers:
- image: gcr.io/PROJECT_ID/anythingllm
ports:
- containerPort: 3001
env:
- name: NODE_ENV
value: production
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: anythingllm-secrets
key: database-url
resources:
limits:
memory: 2Gi
cpu: 2000m
GKE 部署
集群创建
bash
# 创建 GKE 集群
gcloud container clusters create anythingllm-cluster \
--zone us-central1-a \
--num-nodes 3 \
--machine-type e2-standard-4 \
--enable-autoscaling \
--min-nodes 1 \
--max-nodes 10 \
--enable-autorepair \
--enable-autoupgrade
Helm Chart 部署
yaml
# values.yaml
replicaCount: 3
image:
repository: gcr.io/PROJECT_ID/anythingllm
tag: latest
pullPolicy: Always
service:
type: LoadBalancer
port: 80
targetPort: 3001
ingress:
enabled: true
annotations:
kubernetes.io/ingress.global-static-ip-name: anythingllm-ip
networking.gke.io/managed-certificates: anythingllm-ssl-cert
hosts:
- host: anythingllm.yourdomain.com
paths:
- path: /
pathType: Prefix
resources:
limits:
cpu: 1000m
memory: 2Gi
requests:
cpu: 500m
memory: 1Gi
autoscaling:
enabled: true
minReplicas: 2
maxReplicas: 10
targetCPUUtilizationPercentage: 70
env:
- name: NODE_ENV
value: production
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: anythingllm-secrets
key: database-url
Cloud SQL 配置
bash
# 创建 Cloud SQL 实例
gcloud sql instances create anythingllm-db \
--database-version POSTGRES_14 \
--tier db-custom-2-4096 \
--region us-central1 \
--backup-start-time 02:00 \
--enable-bin-log \
--storage-auto-increase
# 创建数据库
gcloud sql databases create anythingllm --instance anythingllm-db
# 创建用户
gcloud sql users create anythingllm \
--instance anythingllm-db \
--password your-secure-password
Microsoft Azure 部署
Azure Container Instances
基础部署
bash
# 创建资源组
az group create --name anythingllm-rg --location eastus
# 部署容器实例
az container create \
--resource-group anythingllm-rg \
--name anythingllm \
--image mintplexlabs/anythingllm:latest \
--cpu 2 \
--memory 4 \
--ports 3001 \
--dns-name-label anythingllm-unique \
--environment-variables \
NODE_ENV=production \
DATABASE_URL=postgresql://user:pass@db-host:5432/anythingllm \
--secure-environment-variables \
OPENAI_API_KEY=your-openai-key
ARM 模板部署
json
{
"$schema": "https://schema.management.azure.com/schemas/2019-04-01/deploymentTemplate.json#",
"contentVersion": "1.0.0.0",
"parameters": {
"containerName": {
"type": "string",
"defaultValue": "anythingllm"
},
"databaseUrl": {
"type": "securestring"
},
"openaiApiKey": {
"type": "securestring"
}
},
"resources": [
{
"type": "Microsoft.ContainerInstance/containerGroups",
"apiVersion": "2021-03-01",
"name": "[parameters('containerName')]",
"location": "[resourceGroup().location]",
"properties": {
"containers": [
{
"name": "anythingllm",
"properties": {
"image": "mintplexlabs/anythingllm:latest",
"ports": [
{
"port": 3001,
"protocol": "TCP"
}
],
"environmentVariables": [
{
"name": "NODE_ENV",
"value": "production"
},
{
"name": "DATABASE_URL",
"secureValue": "[parameters('databaseUrl')]"
},
{
"name": "OPENAI_API_KEY",
"secureValue": "[parameters('openaiApiKey')]"
}
],
"resources": {
"requests": {
"cpu": 2,
"memoryInGB": 4
}
}
}
}
],
"osType": "Linux",
"ipAddress": {
"type": "Public",
"ports": [
{
"port": 3001,
"protocol": "TCP"
}
],
"dnsNameLabel": "anythingllm-unique"
}
}
}
]
}
Azure Kubernetes Service (AKS)
集群创建
bash
# 创建 AKS 集群
az aks create \
--resource-group anythingllm-rg \
--name anythingllm-aks \
--node-count 3 \
--node-vm-size Standard_D2s_v3 \
--enable-addons monitoring \
--enable-cluster-autoscaler \
--min-count 1 \
--max-count 10 \
--generate-ssh-keys
Azure App Service
配置文件
yaml
# azure-pipelines.yml
trigger:
- main
pool:
vmImage: 'ubuntu-latest'
variables:
dockerRegistryServiceConnection: 'anythingllm-acr'
imageRepository: 'anythingllm'
containerRegistry: 'anythingllmacr.azurecr.io'
dockerfilePath: '$(Build.SourcesDirectory)/Dockerfile'
tag: '$(Build.BuildId)'
stages:
- stage: Build
displayName: Build and push stage
jobs:
- job: Build
displayName: Build
steps:
- task: Docker@2
displayName: Build and push an image to container registry
inputs:
command: buildAndPush
repository: $(imageRepository)
dockerfile: $(dockerfilePath)
containerRegistry: $(dockerRegistryServiceConnection)
tags: |
$(tag)
latest
- stage: Deploy
displayName: Deploy stage
dependsOn: Build
jobs:
- deployment: Deploy
displayName: Deploy
environment: 'production'
strategy:
runOnce:
deploy:
steps:
- task: AzureWebAppContainer@1
displayName: 'Azure Web App on Container Deploy'
inputs:
azureSubscription: 'anythingllm-subscription'
appName: 'anythingllm-app'
containers: '$(containerRegistry)/$(imageRepository):$(tag)'
DigitalOcean 部署
App Platform 部署
配置文件
yaml
# .do/app.yaml
name: anythingllm
services:
- name: web
source_dir: /
github:
repo: your-username/anythingllm
branch: main
run_command: npm start
environment_slug: node-js
instance_count: 2
instance_size_slug: basic-xxs
http_port: 3001
health_check:
http_path: /api/health
env:
- key: NODE_ENV
value: production
- key: DATABASE_URL
value: ${db.DATABASE_URL}
type: SECRET
- key: OPENAI_API_KEY
value: your-openai-key
type: SECRET
databases:
- name: db
engine: PG
version: "14"
size: basic-xs
num_nodes: 1
Droplet 部署
初始化脚本
bash
#!/bin/bash
# droplet-init.sh
# 更新系统
apt update && apt upgrade -y
# 安装 Docker
curl -fsSL https://get.docker.com -o get-docker.sh
sh get-docker.sh
# 安装 Docker Compose
curl -L "https://github.com/docker/compose/releases/download/v2.20.0/docker-compose-$(uname -s)-$(uname -m)" -o /usr/local/bin/docker-compose
chmod +x /usr/local/bin/docker-compose
# 创建应用目录
mkdir -p /opt/anythingllm
cd /opt/anythingllm
# 创建 docker-compose.yml
cat > docker-compose.yml << EOF
version: '3.8'
services:
anythingllm:
image: mintplexlabs/anythingllm:latest
ports:
- "80:3001"
environment:
- NODE_ENV=production
- DATABASE_URL=postgresql://anythingllm:password@db:5432/anythingllm
- OPENAI_API_KEY=your-openai-key
depends_on:
- db
restart: unless-stopped
volumes:
- anythingllm_data:/app/storage
db:
image: postgres:14
environment:
- POSTGRES_DB=anythingllm
- POSTGRES_USER=anythingllm
- POSTGRES_PASSWORD=password
volumes:
- postgres_data:/var/lib/postgresql/data
restart: unless-stopped
volumes:
anythingllm_data:
postgres_data:
EOF
# 启动服务
docker-compose up -d
# 设置防火墙
ufw allow 22
ufw allow 80
ufw allow 443
ufw --force enable
Vercel 部署
配置文件
json
{
"version": 2,
"builds": [
{
"src": "server/index.js",
"use": "@vercel/node"
},
{
"src": "frontend/package.json",
"use": "@vercel/static-build",
"config": {
"distDir": "dist"
}
}
],
"routes": [
{
"src": "/api/(.*)",
"dest": "/server/index.js"
},
{
"src": "/(.*)",
"dest": "/frontend/dist/$1"
}
],
"env": {
"NODE_ENV": "production",
"DATABASE_URL": "@database-url",
"OPENAI_API_KEY": "@openai-api-key"
},
"functions": {
"server/index.js": {
"maxDuration": 30
}
}
}
Railway 部署
配置文件
toml
# railway.toml
[build]
builder = "DOCKERFILE"
dockerfilePath = "Dockerfile"
[deploy]
startCommand = "npm start"
healthcheckPath = "/api/health"
healthcheckTimeout = 100
restartPolicyType = "ON_FAILURE"
restartPolicyMaxRetries = 10
[[deploy.environmentVariables]]
name = "NODE_ENV"
value = "production"
[[deploy.environmentVariables]]
name = "PORT"
value = "3001"
监控和日志
Prometheus 监控
配置文件
yaml
# prometheus.yml
global:
scrape_interval: 15s
scrape_configs:
- job_name: 'anythingllm'
static_configs:
- targets: ['anythingllm:3001']
metrics_path: '/api/metrics'
scrape_interval: 30s
- job_name: 'postgres'
static_configs:
- targets: ['postgres-exporter:9187']
- job_name: 'redis'
static_configs:
- targets: ['redis-exporter:9121']
Grafana 仪表板
仪表板配置
json
{
"dashboard": {
"title": "AnythingLLM Monitoring",
"panels": [
{
"title": "Request Rate",
"type": "graph",
"targets": [
{
"expr": "rate(http_requests_total[5m])",
"legendFormat": "{{method}} {{status}}"
}
]
},
{
"title": "Response Time",
"type": "graph",
"targets": [
{
"expr": "histogram_quantile(0.95, rate(http_request_duration_seconds_bucket[5m]))",
"legendFormat": "95th percentile"
}
]
},
{
"title": "Memory Usage",
"type": "graph",
"targets": [
{
"expr": "process_resident_memory_bytes",
"legendFormat": "Memory"
}
]
}
]
}
}
日志聚合
ELK Stack 配置
yaml
# docker-compose.logging.yml
version: '3.8'
services:
elasticsearch:
image: docker.elastic.co/elasticsearch/elasticsearch:8.8.0
environment:
- discovery.type=single-node
- xpack.security.enabled=false
ports:
- "9200:9200"
logstash:
image: docker.elastic.co/logstash/logstash:8.8.0
volumes:
- ./logstash.conf:/usr/share/logstash/pipeline/logstash.conf
ports:
- "5044:5044"
kibana:
image: docker.elastic.co/kibana/kibana:8.8.0
environment:
- ELASTICSEARCH_HOSTS=http://elasticsearch:9200
ports:
- "5601:5601"
filebeat:
image: docker.elastic.co/beats/filebeat:8.8.0
volumes:
- ./filebeat.yml:/usr/share/filebeat/filebeat.yml
- /var/log:/var/log:ro
- /var/lib/docker/containers:/var/lib/docker/containers:ro
command: filebeat -e -strict.perms=false
自动扩展
Kubernetes HPA
yaml
# hpa.yaml
apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
name: anythingllm-hpa
spec:
scaleTargetRef:
apiVersion: apps/v1
kind: Deployment
name: anythingllm
minReplicas: 2
maxReplicas: 20
metrics:
- type: Resource
resource:
name: cpu
target:
type: Utilization
averageUtilization: 70
- type: Resource
resource:
name: memory
target:
type: Utilization
averageUtilization: 80
behavior:
scaleDown:
stabilizationWindowSeconds: 300
policies:
- type: Percent
value: 10
periodSeconds: 60
scaleUp:
stabilizationWindowSeconds: 60
policies:
- type: Percent
value: 50
periodSeconds: 60
AWS Auto Scaling
json
{
"AutoScalingGroupName": "anythingllm-asg",
"MinSize": 2,
"MaxSize": 10,
"DesiredCapacity": 2,
"DefaultCooldown": 300,
"HealthCheckType": "ELB",
"HealthCheckGracePeriod": 300,
"LaunchTemplate": {
"LaunchTemplateName": "anythingllm-template",
"Version": "$Latest"
},
"TargetGroupARNs": [
"arn:aws:elasticloadbalancing:region:account:targetgroup/anythingllm"
],
"Tags": [
{
"Key": "Name",
"Value": "anythingllm-instance",
"PropagateAtLaunch": true
}
]
}
备份策略
数据库备份
自动备份脚本
bash
#!/bin/bash
# backup.sh
DATE=$(date +%Y%m%d_%H%M%S)
BACKUP_DIR="/backups"
DB_NAME="anythingllm"
# 创建备份目录
mkdir -p $BACKUP_DIR
# 数据库备份
pg_dump $DATABASE_URL > $BACKUP_DIR/db_backup_$DATE.sql
# 压缩备份
gzip $BACKUP_DIR/db_backup_$DATE.sql
# 上传到 S3
aws s3 cp $BACKUP_DIR/db_backup_$DATE.sql.gz s3://anythingllm-backups/
# 清理本地备份 (保留7天)
find $BACKUP_DIR -name "db_backup_*.sql.gz" -mtime +7 -delete
echo "Backup completed: db_backup_$DATE.sql.gz"
Kubernetes CronJob 备份
yaml
# backup-cronjob.yaml
apiVersion: batch/v1
kind: CronJob
metadata:
name: database-backup
spec:
schedule: "0 2 * * *" # 每天凌晨2点
jobTemplate:
spec:
template:
spec:
containers:
- name: backup
image: postgres:14
command:
- /bin/bash
- -c
- |
DATE=$(date +%Y%m%d_%H%M%S)
pg_dump $DATABASE_URL | gzip > /backup/db_backup_$DATE.sql.gz
aws s3 cp /backup/db_backup_$DATE.sql.gz s3://anythingllm-backups/
env:
- name: DATABASE_URL
valueFrom:
secretKeyRef:
name: anythingllm-secrets
key: database-url
volumeMounts:
- name: backup-storage
mountPath: /backup
volumes:
- name: backup-storage
emptyDir: {}
restartPolicy: OnFailure
安全配置
SSL/TLS 配置
Let's Encrypt 证书
bash
# 安装 Certbot
apt install certbot python3-certbot-nginx
# 获取证书
certbot --nginx -d anythingllm.yourdomain.com
# 自动续期
echo "0 12 * * * /usr/bin/certbot renew --quiet" | crontab -
Nginx 配置
nginx
# nginx.conf
server {
listen 80;
server_name anythingllm.yourdomain.com;
return 301 https://$server_name$request_uri;
}
server {
listen 443 ssl http2;
server_name anythingllm.yourdomain.com;
ssl_certificate /etc/letsencrypt/live/anythingllm.yourdomain.com/fullchain.pem;
ssl_certificate_key /etc/letsencrypt/live/anythingllm.yourdomain.com/privkey.pem;
ssl_protocols TLSv1.2 TLSv1.3;
ssl_ciphers ECDHE-RSA-AES256-GCM-SHA512:DHE-RSA-AES256-GCM-SHA512:ECDHE-RSA-AES256-GCM-SHA384:DHE-RSA-AES256-GCM-SHA384;
ssl_prefer_server_ciphers off;
ssl_session_cache shared:SSL:10m;
location / {
proxy_pass http://localhost:3001;
proxy_http_version 1.1;
proxy_set_header Upgrade $http_upgrade;
proxy_set_header Connection 'upgrade';
proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
proxy_cache_bypass $http_upgrade;
}
}
网络安全
防火墙配置
bash
# UFW 配置
ufw default deny incoming
ufw default allow outgoing
ufw allow ssh
ufw allow 80
ufw allow 443
ufw enable
# 限制 SSH 访问
ufw limit ssh
安全组配置 (AWS)
json
{
"GroupName": "anythingllm-sg",
"Description": "Security group for AnythingLLM",
"SecurityGroupRules": [
{
"IpPermissions": [
{
"IpProtocol": "tcp",
"FromPort": 80,
"ToPort": 80,
"IpRanges": [{"CidrIp": "0.0.0.0/0"}]
},
{
"IpProtocol": "tcp",
"FromPort": 443,
"ToPort": 443,
"IpRanges": [{"CidrIp": "0.0.0.0/0"}]
},
{
"IpProtocol": "tcp",
"FromPort": 22,
"ToPort": 22,
"IpRanges": [{"CidrIp": "YOUR_IP/32"}]
}
]
}
]
}
故障排除
常见问题
容器启动失败
bash
# 检查容器日志
docker logs anythingllm
# 检查资源使用
docker stats anythingllm
# 检查网络连接
docker exec anythingllm curl -I http://localhost:3001/api/health
数据库连接问题
bash
# 测试数据库连接
psql $DATABASE_URL -c "SELECT 1;"
# 检查数据库状态
kubectl get pods -l app=postgres
kubectl logs postgres-pod-name
性能问题
bash
# 检查资源使用
kubectl top pods
kubectl top nodes
# 检查 HPA 状态
kubectl get hpa
kubectl describe hpa anythingllm-hpa
调试工具
健康检查脚本
bash
#!/bin/bash
# health-check.sh
echo "Checking AnythingLLM health..."
# 检查应用健康
if curl -f http://localhost:3001/api/health > /dev/null 2>&1; then
echo "✓ Application is healthy"
else
echo "✗ Application health check failed"
exit 1
fi
# 检查数据库连接
if psql $DATABASE_URL -c "SELECT 1;" > /dev/null 2>&1; then
echo "✓ Database connection is healthy"
else
echo "✗ Database connection failed"
exit 1
fi
# 检查磁盘空间
DISK_USAGE=$(df / | awk 'NR==2 {print $5}' | sed 's/%//')
if [ $DISK_USAGE -lt 90 ]; then
echo "✓ Disk usage is normal ($DISK_USAGE%)"
else
echo "⚠ Disk usage is high ($DISK_USAGE%)"
fi
echo "Health check completed"
最佳实践
部署检查清单
部署前检查
- [ ] 选择合适的云平台和服务
- [ ] 配置环境变量和密钥
- [ ] 设置数据库和存储
- [ ] 配置网络和安全组
- [ ] 准备监控和日志系统
- [ ] 制定备份策略
- [ ] 测试部署流程
部署后验证
- [ ] 应用健康检查通过
- [ ] 数据库连接正常
- [ ] API 端点可访问
- [ ] 监控指标正常
- [ ] 日志收集工作
- [ ] 备份任务运行
- [ ] 安全配置生效
性能优化建议
应用层优化
- 启用应用缓存
- 优化数据库查询
- 使用 CDN 加速静态资源
- 实施负载均衡
- 配置合适的资源限制
基础设施优化
- 选择合适的实例类型
- 配置自动扩展
- 使用多可用区部署
- 优化网络配置
- 实施缓存策略
成本控制
成本优化策略
- 使用预留实例或节约计划
- 实施自动扩展减少闲置资源
- 选择合适的存储类型
- 监控和优化数据传输成本
- 定期审查和清理未使用资源
通过遵循本指南,您可以在各种云平台上成功部署AnythingLLM,并确保其在生产环境中的稳定运行。记住要根据具体的业务需求和预算选择最适合的部署方案。